International Journal of Theoretical Physics, Vol. 42, No. 7, July 2692003)
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We defined and studied three different types of lattice-valued finite state quantum
tomata (LQA) and four different kinds of LQA operatipdscussed their advantages,
disadvantages, and various properties. There are four major results obtained in this
paper. First, no one of the above mentioned LQA follows the law of lattice value con-
servation. Second, the theorem of classical automata theory, that each nondeterministic
finite state automaton has an equivalent deterministic one, is not necessarily valid for
finite state quantum automata. Third, we proved the existence of semilattices and also
lattices formed by different types of LQA. Fourth, there are tight relations between
properties of the original lattideand those of thé-valued lattice formed by LQA.

KEY WORDS: quantum automata; lattice of quantum automata; operation of quantum
automata.

1. INTRODUCTION

Studies in quantum computing are of interest not only as explorations for
smart quantum algorithms and efficient implementations of quantum circuits, but
also as basic researches in quantum computation theory (Deutsch, 1985). As a
matter of fact, an appropriate logic interpretation of quantum mechanics has at-
tracted attention of many scientists already in the early years of last century. From
Heisenberg to Reichenbach (Reichenbach, 1998), scientists have recognized that
the classic (two-valued) logic can no longer serve as the basis of a modem theory
of quantum physics. It was von Neumann who has studied a new type of logic, the
guantum logic, where lattices are taken as mathematical models for such logics.
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Nowadays, with ever-increasing interest in quantum computing, different kinds of
quantum logics have been put forward (Greechie, 1981; Rawling and Selesnick,
2000). They are based on different principles, for example based on probability
(Moore and Crutchfield, 2000). Recently, Ying has studied lattice-valued quantum
logic and lattice-valued finite-state quantum automata and obtained a series of
results (Ying, 2000a,b). This paper is a further study on the latter with the aim of
providing more insight in the mathematical basis of quantum computation. As itis
well known, the theory of finite state automata is an essential part of the classical
theory of computation. We are convinced that the lattice-valued finite-state quan-
tum automata will also play an important role in developing a sound and powerful
theory of quantum computation.

For the subsequent use in this paper, we first give some essential facts about
lattices.

Following are two equivalent definitions of lattice:

Definition 1.1. (Cohn, 1981): A seL of elements forms a lattice, if

1. L is a partial orderedd) set
2. For each pair of elemendisb of L, there is a unique least upper bound sup
(a, b) and a unique largest lower bound iaf f), with the representation:

sup@,b) =a|_Jb,inf(a, b) =a(")b.

Definition 1.2. (Hermes, 1955). A sdt of elements forms a lattice if there are
two binary operation$ J and(") defined onL, such that for all elementandb
of L:

1. The two commutative rules:
al Jb=bl Ja,
aﬂ b= bﬂ a.

2. The two associative rules:

(@M Ne=aN6NY
(AU Ue=aU6U9

3. and the two absorption rules:
a() (aU b) =a,
al J (a N b) —a

hold.
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Proposition 1.3. (Cohn, 1981; Hermes, 1955)Definitions 1.1 and 1.2 are
equivalent.

In this paper we will use the symbldio denote a lattice in general. The capital
letter L is only used to denote its element set.

Corollary 1.4. For a lattice |, and finite set S of its elements has a unique least
upper boundsup (S) and a unique largest lower boundf (S), where

sup® =|_Jixixe s}, inf(S)=[ixIxe S}
Both sup §) and inf (S) belong toL.

Definition 1.5. If | has a greatest element slipgnd a least element inf)( then
| is called a bounded lattice. If any (finite or infinite) s&bf the elements of a
latticel has a least upper bound sup) &nd a greatest lower bound irf)( which
belong toL, thenl is called a complete lattice.

In this paper we concern only bounded lattices and will use the notation
I =(L, S, 0,1) to describe a lattice, whete is the set of lattice elements
describes the partial order of lattice elements, 0 is the least element and 1 the
greatest element. Due to Proposition 1.3, a lattice can be also represented in form

I =(L, N U, 01).

Definition 1.6. If for any elements, b, andc of a latticel, the following two
distributive rules hold:

AN (U = (N8 U (o)
2U(eN9) = (2U) N (2.

then it is called a distributive lattice.

Proposition 1.7. The two equations of Definition 1.6 are equivalent, i.e., any one
of them can be inferred from another.

Definition 1.8. If for any elementsa, b, andc of a latticel , the following modular

rule holds:
accno aU(bﬂc) = (an)ﬂc

thenl is called a modular lattice.
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Proposition1.9. Forany elements a, b, and c of alattice |, the following inclusion

N S Pl
UBN9) = (UNN(US)

Proposition 1.10. From Propositions 1.7 and 1.9 follows, that the lattice | is a
distributive lattice if one of the following inclusion rules holds:

2N (U9 £ (2N)U (aNe).
QUDNEUY <aU BN,

Proposition 1.11. For any elements a, b, and c of a lattice I, the following
inclusion rule holds:

aU(bﬂc) c (an)ﬂc

Proposition 1.12. From Proposition 1.11 and Definition 1.8 follows, that the
lattice | is a modular lattice if for any elements a, b, and c of |, the following
inclusion rule holds:

accno (an)ﬂcgaU(bﬂc)

Proposition 1.13. A lattice | is modular if and only if for any elements a, b, and

CaUENEUS) - ((UDNEUY

2. LATTICE-VALUED FINITE-STATE QUANTUM AUTOMATA

First we repeat the definition of a lattice-valued finite-state quantum automa-
ton, LQA for short, defined by Ying (2000a) in a slightly different notation. At the
same time we will introduce a new version of LQA and compare their acceptance
characteristics.

Definition 2.1. Letl = (L, C, 0, 1) be a latticex be a finite alphabet, called the
input alphabet. An LQAZ defined on(, X) is a quadruple??= (Q, |, T, 4),
wherel € Q is a set of initial states] € Q is a set of terminating state/
is a set ofl-valued predicates defined dp x ¥ x Q: for eachqs, g, € Q and
X € X, 8(01, X, qz) € Ais an element of. Note that in4 only thoses(qa, X, gy),
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which are not equal to O (least element pére listed in4.5(q, X, d) is called
the acceptance degreexby 7 that the statey; is transformed ta, when the
symbolx is input. The LQA are classified in type A LQA and type B LQA in
Definition 2.4 according to the way the acceptance degree is calculated.

Definition 2.2. Let % = (Q, |, T4) be a LQA defined onl( %). For each, j,
wheres(q, X, q;) # 0, where Ois the least element of the lattidhe tripletg; x g
is called a transition of?. A finite connection of transitiong X1 01Xz - - - On—1Xn0n
is called a transition sequence @f where allg belong toQ and allx belong to
3. If besidesqg belongs tol and g, belongs toT, then we say the transition
sequence is successful and is called a single watf 22. We call the symbol
sequences = Xxj Xz - - - X, the label ofw, or an accepted string of the automaton
J/) The acceptance degreegdfy this single path is defined as: Accgft”, s) =
Im 8(ai, Xi+1, Gi+1), where( is the inf operation of the lattide

Since the automaton is in general non deterministic, the same label may be
contained in more than one path. We have yet to define the acceptance degree in
general.

Proposition2.3. Let® = (Q, |, T, 4) beaLQA defined off, £),s = x1xp- - -
Xn be a string of2*. Let T(, s) = {w | w is a path of %, s is the label of W
denote the “distributed path” inz accepting s. ThefT (%, s)| is finite for every s.

The proof is easy and will not be paraphrased here.
With help of this proposition we are able to give the following:

Definition 2.4. Let ,sandT (%, s) be defined as above. The general acceptance
degree ok by 22 is defined in two different ways:

n-1
1. Acceph(# s) = U ﬂS(QW,i,Xi+1, Qw,i+1)

weT(R,s) i=0
n-1
2. Acceps(% ) =(] U 8w, %41, Guis1)
i=0weT(R,s)
whereqy i, i =0, 1, 2,..., n, are the states traversed by the patih.QA defined

on the basis of Acceptand Accepg are called LQA of type A and type B. In word,

in the case of type A, we first calculate the acceptance degreokach single

path, then unite them together. In the case of type B, we take the first transition
of all paths inT (2, s), unite their acceptance degi&@w,o, X1, Gw,1) together by

the sup operatiof). And then we take the second, third, transition of all paths

and unite their acceptance degrees separately. At last, we perform the inf operation
() on all these united values and get the wanted general acceptance degjoge of

R In any case, the language acceptedtys {(s, Accept(%, s)) | s € Z*}.
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Jo
8 (a0 %, q)=a l
q;
(a1, y,q)=b d(qLy.@)=¢
qz s

Fig. 1. ALQA with four states.

Example 2.5. Let % = ({0, d1, G2, 93}, {do}, {02, 03}, {8(Cho, X, Q1) = &, 8(q, Y,
02) = b, 8(g2, Y, g3) = ¢}). There are two paths for accepting the strkyan this
automatonw; = o X 1 Y G andw, = (o X ¢ Y g. The single path acceptance
degrees are Accepi(2, xy) = a[ b and Accepivy( %, xy) = a[ ) c respec-
tively. The general acceptance degree of type A is Acdept xy) = (a(b) U
(a( c). On the other hand, the general acceptance degree of type B is Accept
(R, xy) =a((blJc). See Fig. 1 for an illustration.

According to Proposition 1.9, we have Accgp®, xy) = (a[\b) U@ c)
C a[\(blJc) = Accepi( R, xy). In fact, we have the more general

Proposition 2.6. For any LQA 2 the general acceptance degrees (called rec-
ognizability in Ying (2000a)) calculated according to rules of type A and type B
have the relationship:

1. Acceph(, s) < Accepg( R, s)
2. The inclusion symbof can be replaced by the equation symbolif
R is a deterministic LQA.

That means, the type B LQA is more “generous” in nondeterministically
accepting a string front*.

Proof: This proposition can be proved based on a mathematical induction with
help of Proposition 1.9, can also follow directly from Lemma 2.14 given
below. O

The remaining discussion of this section relates only to LQA of type B, unless
it is otherwise stated.
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Note that any of the four componer®s I, T, 4, of 22 in Definition 2.1 can
be empty. In this case the automatghaccepts no sentence froBt* no matter
whether it is of types A or B. Any such is called an empty automaton.

Based on the concept of acceptance degree, it is possible to define a partial
order for the quantum automata.

Definition 2.7. AssumeZ; and #, are two LQA (both of type A or both of type
B) defined on g, X). If

Forall se X*  Accept(#1, s) C Accept(#z, S),
Then we say that?,, ' X,.

Proposition 2.8. The inclusion relation given in Definition 2.7 defines a partial
order.

Definition 2.9. Two LQA %2, and %, defined on the samég, (X) (both of types A
or B) are called semantically equivalent if for ampf X*,

Accept(Ry, s) C Accept(Zy, S), Accept(#,, s) C Accept(#s, S),
are both valid. In this case we use the notation:
Accept(Ry, S) = Accept(Ra,s), Of R~ R,

to represent their relationship, where the equation symimokans the identity of
lattice elements iih.

Since we have established a partial order for the LQA, we are now interested
in exploring the question: is it possible to build a lattice with the LQA themselves
as lattice elements? In the following we will introduce and discuss some binary
operations on LQA and see whether they can serve as the supremum and infimum
operations of the wanted lattice. First we review two operations, which were defined
in Ying (2000b).

Definition 2.10. Let \)/1)1 = (Ql: 11, Ty, Al) and k)/?)z = (QZ: Io, Ty, Az) be two
LQA defined on I, X). The product?; x R, of R, and ; is also a LQA
defined onl(, ), called the product automaton, with

Ry x Ry = Rz =(Qg, |3, T3, 43), where

Q3= Q1 x Q2
|3=|1X|2
T3=T1XT2

Az = {8(q, X, ) 1 9= (01, G);q" = (0, 05); A1, d; € Q1; 0, O € Qo;

X,y € %, 5(q, X, q/) = 8R1(q11 X, qi) mSRz(qZ X, qé) 75 0}
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Definition 2.11. Let %)1 = (Q]_, l4, Tq, A]_) and 9/?2 = (Qz, Io, To, Az) be two
LQA defined onk, X), whereQ; N Q2 = @. The sumR, + R, of Ry and R,
is also a LQA defined orl (X), called the sum automaton, with

R+ Ry = Rz =(Qa, |3, T3, 43), where

Qs =Q1JQ2
ls=11JI2
=TT
Lo = 20| ) Do

Theorem 2.12. (Ying, 2000b). For any se ©*

Acceph (1 x Ha,s) C Acceph( /1, s) () Acceph (%2, s)

Theorem 2.13. (Ying, 2000b). For any se X*,
Acceph (R1 + Ry, s) = Acceph (H1, S) U Acceply (22, S)

So, the LQA of type A form a upper semilattice with respect to acceptance
degree and sum operation. But they do not form a lower semilattice.

We will prove similar results for LQA of type B. In order to do that, we need
alemma.

Lemma 2.14. Assume all g; are elements of the same lattice, then

n m
U @mﬂﬁaﬂ~(ﬁw)§ &, j
j1.J2:--» jnisan ordered i=1 j:l
n—tuple of numbers from (1,2,,m)

Proof: Since for an arbitary,

m

a,j S U aj,j

j=1

therefore, for any (fixed) combination ofi( j2, ..., jn),
n m
(al,jl ﬂaz,jz ﬂ e ﬂan,in) < ﬂ U aj,j
i=1j=1
Take the union over all possible combinations jaf (2, . . ., jn) and then we

get the lemma proved. O
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Theorem 2.15. For any se ©*
Accepi (R x ARy, S) € Accepk(Ha, S) ﬂAccepg(;’)/}?z, S)

Proof: Lets= X1Xs...Xn

Accepk (R x ARy, )

n—1

= ﬂ U [5R1(C1w1,i, Xi+1, qu,i+1)ﬂ3R2(qW2,i, Xi+1, CIWZ,i+1)]
i=0 WlﬁTr((F;LS))v
woeT(Ry,S

with help of Lemma 2.14

h { |: U aRl(qWLi’ Xi+1, qu,i+l):| ﬂ |: U (SRz(qW2,i y Xi+1, qu,i+1):| ]

w1€T(Ry,S) W2eT(Rz,S)

n-1

|: SRy (Ohwa,i s Xi+1, qu,i+1)i| N |:ﬂ U Sr(@wai X1, qwz,i+1):|
i=0 w1€T(Ry,s)

i=0 w2eT(Ry,s)

= Acceph (%1, 5)[ | Accepl( A2, 9).

Theorem 2.16. For any se &%,
Accepk(Ha, S) UAccepg(Q/Rz, S) € Accepl (R + Ry, S)

Proof: Lets= x1Xz...Xn. Use a similaridea of the proof procedure of Theorem
2.15 we have;

Accept( %y, s) | J Accept (%2, 9)

n—1

n—-1
|:ﬂ U SRl(qWLii Xi+1, qW1,i+l)j| U |:ﬂ U (SRZ(qWZ,il Xi+1, qWQ,i+l)i|

i=0 w1€T(Ry,s) i=0 w2eT(Ry,s)

- m { |: U 8R1(qW1,i s Xi+1, qW1.i+1):| U |: U SRZ((I‘"z,j s Xj+l| quyJ'+l)i| ]
jigizill w1€T(Ry.S) W2eT(Rz,S)

- { |: U SRy (Ghwy i Xi+1, qwl.i+1):| U |: U R, (O, s Xi+1 QWz,i+1)i| }

i=0.L,..n—-1 w1€T(Ry,S) W2eT(Rz,S)

= Accepi( Ry + Ry, 9)

O

But, in order to justify their role in defining a lattice of LQA, we should
be able to prove additionally the supremum and infimum properties of these two
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Qo Jo
S 6((](), X, qZ):b S(QO,X, q]):c
S@nx.a)=a
o :
(a) LOQA & (by LQA &
Po=(qo,q0)
3 (po, x,p,):an S g \S(P(),X,Pz)—bﬂ ¢
p1=(q1,q1) p>=(q2.q1)
(¢) LQA ®RXR; (d) lattice!

Fig. 2. The product automaton.

operations. Unfortunately, apart from the sum operation of type A, all other three
operations (product operation of types A and B, sum operation of type B) do not
have this property. For product operation of types A and B, we can convince us
about this conclusion from the following example.

Example 2.17. Let 91 = ({do, 01, 2}, {To}, {1, A2}, {81(Co, X, G1) = @, 51(C,
X, 02) = b})and %z = ({do, du}, {do}, {A1}, {81(0o, X, 1) = c}) betwo LQA. Then
according to definition/?, x %2 = ({(do, do), (Qo, A1), (A1, Go), (01, A1), (G2, o),
(q21 ql)}! {(q0= qO)}1 {(q11 ql)i (q2! ql)}1 {8 X ((qu qo)v X, (q11 ql)) = aﬂ C, & x
((do, o), X, (02, 1)) = b() c}). If the latticel = ({a,b,c,1,0,{0C a,b,cC
1}, 0, 1) (see Fig. 2(d)), then it is Acceptly x %2, x) = (a(c) UM c) =
0C c=(alyb)(c = Accept(#1, x) [ Accept(Z%,, x) and 0+ c. This shows
that %1 x 2, is not the largest lower bound of?; and %5, in the sense of
acceptance degree.

Note that the conclusion obtained by this example is not only valid for type
A, but also for type B LQA, because the two types of LQA do not differ from each
other with respect to this example.

More generally, it is possible that?; and 72, have no states in common
and thus the intersection automaton is hard to define. In this case we may find
examples, which show that the intersection is not the largest lower bougatj of
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and %, in the sense of acceptance degree. This is an evidence that we should
consider modifying the definition of quantum automaton.

In order to find a possible solution for this problem, let us have a closer look
at the source of difficulty we have met. First, the old definition of sum and product
is based on structure operation on the two operand automata. This definition has a
syntactic character and is not suitable for defining automata intersection based on
acceptance degree, which is essentially a semantic affair. Second, the old definition
of sum and product is based on nondeterministic quantum automata, which have
the difficulty of not following the distributive rule of lattice operation. Therefore,
our new idea is first to try to transform the quantum automata into deterministic
form and then try to find a suitable form of automata operation.

Thus, the first problem we now meet is the question of whether there exists
always an equivalent deterministic LQA for each nondeterministic LQA? If the
answer is yes, then how do we calculate it? It is well known that each classical
nondeterministic automaton has an equivalent deterministic one. But this is not
necessary true for LQA.

Definition 2.18. An LQA 2 is called proper nondeterministic if it is nondeter-
ministic and there exists no corresponding deterministic automatosuch that
R and & are semantically equivalent. That is:

is (%, proper nondeterministic ~3 %, is(#, deterministic)¥s € *,

Accept(2, s) = Accept(#, s)
Theorem 2.19. There exist proper nondeterministic LQA.

Proof: Consider the LQAZ = ({do, d1, Gz, A3}, {Go}, {02, Ga}, {3(Co, X, 1) =
a,8(q., ¥, d2) = &, 8(qo, X, g3) = b}), which is nondeterministic. See Fig. 3(a).
The lattice used isl =({a,b,0,1,{ac1,bc1,0C4a0<Cb},0,1). See
Fig. 3(b).

For both types A and B, the language accepted?bys {(xy, a), (X, b)}.
If there were a deterministic LQA® such that? ~ 2?, then becauseX is
deterministic, it has only one initial state. Let’s callijt Since % must accept the
sentence to the degred, there must be a terminating stagg and the transition
8(94, X, 0;) = b. q; should not coincide with because otherwise there would be a
loop and sentences of arbitrary length would be accepted. On the other hand, since
' must accept the sentencgto the degree, there must be another terminating
stateqs, which is also a state separated fragandg;. Assumes(qs;, y, 03) = g,
where the valug is to be determined. The following equation should be satisfied:

b(lg=a[)a=a
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Qo

8(gs. %, 03)=b

3(qo. %, qi})=2a a b
qs 0
S(any. @)=a
(a) LQA with four states (b) Lattice /

Fig. 3. Proper nondeterministic LQA.

But from Fig. 3(b) it is easy to see that this equation can never be fulfilled. This
fact refutes the possibility of existence of an equivalent deterministic O

Note that the existence of proper nondeterministic LQA may be a character-
istic property of quantum automata versus the traditional ones.

Thus we have to modify our definition of LQA and to define a new type, the
type C of LQA with the hope that this new kind of LQA will help us to find an
equivalent deterministic LQA for each nondeterministic one and thus to enable the
construction of the lattice theoretic union and intersection operations.

Definition 2.20. A lattice valued quantum automaton of type C defined p&}
is a quadruple? = (Q, I, T, {8(q, X, d/, out)> O|x € X; oute T U{e};q,q €
Q}) whereQ is the set of stated, C Q is the set of initial statesI € Q is the
set of terminating states. The notation “out” is either a symbd afr the empty
symbole. Eachd(q, X, ', out) is an element of the lattide which means that
portion of the degree of accepting the input symbplvhich is assigned to the
case that the next input symbple X (if out = y) or the total acceptance degree
of this transition (if out= empty andy’ is a derminating state), and transforming
the state fromg to g’. The lattice union 08(q, x, ', y) for all possibley is then
the general degree of accepting the input symdbol

The new definition is a refinement of the old one. It divides the acceptance
degree to different exits of the fan out of the state

An additional advantage of this definition is the ability of defining partial
acceptance.

Definition 2.21. Letw = Qg X1 Qs ... 0n_1 Xn On be a path of the LQAX whereqg
is an initial state andj, is a terminating state. Then each string xg X3 ... X,
1<i < n,is partially accepted by?. We use the notation P-Accep?4; s) to
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Go
8(qn.x, q,y)~a
8(Go. %, q1,z)=b 8(qo, %, @2, t)=¢
S
& 4 8 (a0t e )= 8

3(q,y, a3, )=d
S (QI,YiCh, J=e

qs s

Fig. 4. LQA of type C.

denote partial acceptance. A partially accepted string is (wholly) accepted by a
LQA ifand only ifi = n.

Example 2.22. Let ¥ = {X, Y, z,t}, # = ({do, G1, U2, Gs, G, s, Ge}, {do}, {Ta,
Q4. U5, Os}, {6(do, X, A1, Y) = &, 8(0o, X, 01, 2) = b, 8(q1, ¥, ds, ) =d, 8(q1, Y,
Os,) =€38(th, 2,05, ) = f,8(do, Y, G2, t) = €, 8(d2, Y, G, ) = 9}). See Fig. 4.

In this example, we have P-Accep®?, x) = a| Jb|Jc, Accept( &, xy) =
a(dJe), Accept(#, xz) = b f, Accept( %, xt) =c() 0.

Here itis easy to see thatdf= b (i.e. the state transitiong{ — 03, 41 — Ua
andq; — gs share the same “heritage” from the previous transitigr> 1)
then the resulting acceptance degrees coincide with those calculated with our old
definition given in last section.

Now we will give an algorithm for transforming any nondeterministic LQA
into an equivalent deterministic LQA. This algorithm is based on a classical one
(e.g. see (Hopcroft and Uliman, 1979)) and modified according to the character-
istics of our LQA definition.

Algorithm 2.23. (Delete nondeterminacy)

1. Givenan LQAZ= (Q, |, T, 4) of type C.

2. Construct Q= p(Q) = {S}, wheregp means power set.
3. Letl"={I}

4. LetT ={S|Se Q,SNT # ©}
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5. Letd = {4, U, y € X}, where

A/l = [8(5, x,5,y) = U {aiIEi qeS,qd €95,8(q,x,q,y)=a € A}}

i
4, = {8(5, x,5,)= U {ail3qesS,d €S, qdeT éa,xq,)=a € A}}
i
Note that|_J; is a lattice union operation whilg is set union operation.

Proposition 2.24. The LQAX® = (Q', ', T’, A) is equivalent to# with re-
spect to accepting strings frolm™*.

Proof: Use mathematical induction. a

In the sequel, we consider the process of producing a deterministic product
LQA of type C by using the above algorithm.

Definition2.25. Let #; = (Q]_, I = {ql'o}, T, Al) and?-}z = (QZ, I, = {qZ’o},

T,, 4) be two deterministic LQA of type C onh,(X). The product?; x %, of

R1 and R, is also a deterministic LQA of type C defined dnX), called the
product automation, with

Ry x Ry = Rz =(Q3, I3, T3, A3), where

Q3=0Q1xQ
I3 = I1 x l2(= (1,0, O2,0))
|3 = |1 X T2
Az ={8(0,%,9,y) 19 = (0, 02); 4" = (0, 03); 0, O € Q1; 02, G € Q2 X, Y €

2,80, %, A, Y) = 8, (01, X, A1, Y) ) Sri (G20 X, G, Y) # 0} U
{8(0,%x,9,)19=(01,02);9 = (0, 0); Gz € Q1,01 € T1; G € Q2,05 €
Toix € £,8(d, %, 9, ) = 8r,(qu, X, 0, )ﬂ(SRz(QL X, Op, ) # 0}

Proposition2.26. Vse ©*, Accept( %y x AR, s) = Accept (4, s) () Accept
(%,5)

Proof: Assumes= X3 X2...Xn, W1 =01,0X101,1---01,n-1 X G1n aNd wy =
02,0X102,1- . . O2,n—1 Xn O2,n are the corresponding pathsii and %, respectively.
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First we consider the case of= 1. Since both”, and %, are deterministic, we
have

Accept( /iy, s)[ ) Accept( Az, S)
= 8w, (.0, X1, A1,1) ) 8w (02,0, X0, G2,1.) = ACCePE( A1 x Kz, 9)

whereqy o € l1; i1 € Ti; 02,0 € 12, 02,1 € T2
For an arbitraryn > 1 we have:

Accept( 1, ) [ | Accept( Az, S)
n

2
= ﬂ 8wy (O,i» Xi+1, O1,i+1, Xi+2)j| ﬂ 8w, (1.n—1, Xn, 1,0, )ﬂ
i=0

[n—2

ﬂ Sw, (G2,is Xi+1, U241, Xi +2)] ﬂ Sw,(G2,n-1, Xn, O2,n, )
[i=0

|
N

n

I
5

[Swl(qLi X4t O, Xi2) [ ) S (G Xi41, G241, % +2)ﬂ

ﬂ [(SWl(ql,n—ll Xn! ql,ny )ﬂ 5W2(Q2,n—1, an q2,n, ):I
= Accept(Ry x Ry, S)
O

Therefore, the LQA of type C form a lower semilattice with respect to ac-
ceptance degree and the product operatiorBut they do not form an upper
lattice due to Theorem 2.16 Taking the notice after Theorem 2.13 in consid-
eration, we see there is a symmetry between types A and C automata. In or-
der to get a true lattice of LQA, we need to find another way of defining LQA
lattice.

3. LAT (I, 3, ©): ALATTICE OF LQA

The reason that the LQA described in last section do not form a lattice is
the grain size of their equivalent groups, which is too large. LQA accepting in-
put strings to the same degree may have quite different structures. In this sec-
tion, we will limit the variety of LQA structures a little bit and will see that
this limitation helps to develop a true lattice of quantum automata. As the first
step, we will modify our definition slightly such that the states the LQA may
take form a fixed state space. We rephrase the definition of a LQA with this
modification.
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Definition 3.1. Letl = (L, €0, 1) be a latticeX be a finite alphabet, called
the input alphabet) be a finite set of states, called the state space. An LQA
defined onl(, =, ®) is a quadruple”? = (Q, I, T, 4), whereQ C © is a set of
states,| C Q is a set of initial states] € Q is a set of terminating state4

is a set ofl valued predicates defined dp x X x Q: for eachqs, g, € Q and

X € ¥, 8(qu, X, g2) € 4is an element of. Note that ind only thoses(qs, X, g2),
which are not equal to 0 (least element pére listed in4 - §(q., X, gp) is called
the acceptance degreexoby 2 that the state); is transferred taj, when the
symbolx is inputted. The LQA are classified in type A LQA and type B LQA in
Definition 2.4 according to the way the acceptance degree is calculated.

Apart from introducing the state spa@g almost all other definitions about
LQA inthe last section are kept unchanged here. Except that we will follow another
way of defining a lattice of quantum automata. Remember in last section, we started
from defining the partial ordex’ and then tried to use it to define the supremum
and infimum operation for the wanted lattice of quantum automata. In this section,
we will go the opposite way. We first define the two lattice operations for the
wanted automata lattice and prove that they fulfil the rules given in Definition 1.2
Then we define a partial order” based on these two operations. Finally, we will
prove that the new partial order is a suborder of the old arie That means, if
R1 <" Ry then itis alsoR; ' Ry, but not vice versa. During the process of
developing the theory, we will give proofs both for types A and B LQA.

Definition 3.2. Let %1 = (Qq, |1, T1, 41) and % = (Qa, |, To, 4y be two
LQA on (I, X, ®). The intersection?; N R, of A1 and R, is also a LQA
defined onl(, 3, ®), called the intersection automation, with

RN R = Rz =(Qa, I3, T3, a), where

Qs = Q1 Q2
3= 11012
=TT

4y = {B(q, x,0)109,9 € Qzx € 122, 8(q, X, q')
= 5R1(q1 X, q/) ﬂéRz(Q! X, q/) 7é 0

Definition 3.3. Let 71 = (Qq, l1, T1, 4y) and R, = (Qa, 12, T2, 4o be two
LQA on (l, X, ®). The union#1 U R, of %y and R, is also a LQA defined
on(, Z, ©), called the union automation, with

R1U Ry = Ry =(Qg, |3, T3, A3), where
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Qs = Q1 JQ2
ls=11JI2
To=T1JT
43 =1{5(9,x, 99,9 € Q3;x € £,8(q, X, )

8r, (A, %, q) USRZ(q, X, q) # 0}

Note that a union automation is in general not equal to a sum automation
defined in last section, since in Definition 3.3, we have removed the limitation
that Q: N Q2 = ©. In addition, these two operations follow the rules of lattice
operation defined in first section, as the two following theorems illustrate.

The reader is reminded once again thatand() are lattice operations for
the latticel, U andn are lattice operations for our automata lattice, whilend
are set operations.

Theorem 3.4. Let Ry, ZR,, and %3 be three LQA defined o, X, ®), then:
1. RN Ro= RN Ry
2. RU Ry = RoU Ry
3. ()/))1 N %2) N Rz3= RN (377)2 N %3)
4. (RU R)U Rz = Ry U (R U Ry)

Proof: From the definition of intersection automaton and union automaton we
know that the validity of the first two points of this theorem are true. We will
prove only the third point. Le#?; = (Qj, i, Ti, 4),i = 1, 2, 3 by arbitrary LQA
defined onl(, =, ®), then

(P10 Rp) N g

= (@M Q) N s (1) Vs (e T2) N s 5@ x, a) [ x €
%,0,9 € () Q) (1) Qs 80, x, )

= (sr(@ %, ) ) (r(@ %, @) ) (N drla x, )]

- (@@ 1A ()TN
x{5@ x @) 1xex,a,d € Qi) (Q[)Qs) 5@ x )

= 5., (@ %, @) () (0r( %, @) ) Srla x, @) })
= 10 (K2 R
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Theorem 3.5. Let 22, and 2, be arbitrary LQA defined ofl, X, ®), then:
1. (k)/l)l n {7/1)/2) U Ry = Ry
2. (RLU R)N Ry = Ry

Proof: We prove only the first assertion. Le®; = (Q;, |;, Ti, &i),i =1, 2 be
arbitrary LQA defined onl( £, ®), then

(Z1N FR)U Ry = ((Qlﬂ Qz) U Q2 (hﬂ |2> U I2, (TlﬂTz) UTz,
{s@.xa) 1x € 2,00 € (Qu[)Q2) | Q2 80 x, )
= (s0.@ % )@ %, 0) | rla, x, @)} )

= (Q21 |21 T21 {8(q1 X, q/) | X e E! qa q/ € Q21 8(q7 X, q/) = 8R2(q1 X, q/)})
=R,
Similarly, we can prove @1 U Ro) N Ry = R, ]

Note that we have used the same symbols for the intersection and union of
sets and of automata, respectively. There should be no confusion.

Theorem 3.6. The lattice-valued finite-state quantum automata defined on
(I, ¥, ®) form a lattice.

Proof: By summarizing the results of Theorems 3.4 and 3.5 we can see that they
have fulfilled all rules specified in Definition 1.2. Therefore, these automata form a
lattice. We call it Lat [, X, ©). O

As usually, we can use the two operationandU to define the partial order
of lattice elements in Lat (X, ©).

Definition 3.7. For arbitrary LQA 2?1 and #,, we define
R <" Ryifand 0n|y if (%’1 N 374)2) = R
Corollary 3.8. <" is a partial order

Proof: We first have to prove thatif?; C” R, and R, C” RzthenR, <’
Rs. Assume that 71 N Ry) = Ry and (Ro N R3) = R, then

RN Ry = (i%lﬂ %)2) N Rz3= RN (;%zﬂ 5%3)23%)10 Ry =Ry
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Thus the transitivity rule holds. The second thing is to prove that
if R C" Roand Ry <" Rythen Ry = R,.
This means to prove that ity N Ry) = Ry and (B N Ry) = Rrthen Ry =

AR, which is obvious. O

It is easy to prove (by using duality rule) that Definition 3.7 is equivalent to
the following form:

R <" Ryifand only if (R, U Ry) = Ry

We have used the concept of acceptance degree to define a partial order
€’ between the lattice valued automata in last section. On the other hand, we
have also defined the two lattice operatiomn@and U for these automata. Now
we will inspect the relation between the two partial ordefsand C”. In or-
der to do that, we need the following theorems for types A and B LQA,
respectively.

Theorem 3.9. Forany se ©*
Acceph(R1 N Ry, 8) < Acceph (K, s)ﬂAccepg(.%z, S)

Proof: Lets=X; Xp---Xp

Accept, (RN Ry, s)

= U m ((SRl(qW,ini-%—lr i) [ ) 8 (i s %41, qw,i+l))

weT (R Ry,s) i=0

_ n—1
= |:<m Ry (Ow,i s Xi+1, qw,i+1)> ﬂ (ﬂ SR, (Ow,i» Xi+1 qw,i+1))i|
WET(Rng s)

i=0

n-1
[ [ﬂ SRy (Ow,i+ Xi+1, Chw, |+1)H ﬂ [ U [ﬂ SRy (Chw,i+ Xi+1, qW,i+1)H
WeT(RiNRy,s) WeT(RiNRy,s) Li=0
n-1
c [ U |:m8R1(qWI Xi+1, qW|+1):H ﬂ|: U [H(SRZ(QW,i,XiH,qW,iH)H

WEeT(Ry,s) WET(Ry,s) Li=0

N

= Accepl (A1, s) () Acceph (A2, s)

Theorem 3.10. For any se ©*
Accepl (%1 N Ko, S) € Accepi( ARy, s)ﬂAccepg(?/?g, S)
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Proof: Lets=X;Xo---Xn

Accept (RN Ry, S)

n-1
=N U I:(SRl(qW,iu Xi+1, Qi +1) [ ) Ro(Chw,i» Xi 41, qw,i+l)]

i=0 weT(RiNRy,s)

>
|
i

- U I:SRl(qWLi y Xit1s qu,i+1) ﬂ 8Rz(qwzyi y Xitds qu,i+1):|

i=0 wW1€T(Ry,9)
wyeT(Rp,s)

_ﬁ H: U Sr@uis i, Clwl,i+1)} N |: U R Xisa, qu,i+1)“

W1€T(Ry,S) W2€T(Ry,9)

I ﬂ

n—1

SRy (Owa,i» Xi41, qu,i+1)}ﬂ[ﬂ U 8Rz(qu,i,Xi+lxqwz,i+l):|

i=0 w2eT(Ry,s)

|:| =0 w1€T(Ry,S)
= Accepl (%1, 5)[ | Accep( Az, 9).

In the proof of both theorems we have made use of Lemma 2.14.
Proposition 3.11. <" c <’

Proof: We prove?, C" Ry, - R, &' Ry

If Ry S Rpthen (RN Ry) = Rq1. With Theorems 3.9 and 3.10 we know
that Accept (21, S) = Accept(R; N Hz, s) € Accept(Zy, s) () Accept(#z, S)
C’ Accept(PR,, S). Thus Ry ' Ry. O

Theorem 3.12. Lat (I, ¥, ®) is a bounded lattice.

Proof: We consider the LQAZyax = (©, ©, O, Anax= {6(9, X, ') = 1|X €
¥, 0,9 € ©®)}), where 1 is the greatest element of the latticEor any LQA
=(Q, I, T, of Lat (, ¥, ®) we have

1. BnaxU Z=(QUO, | UB, TUB, {§(0,%,q)|x e £;0,9 € Q
U®;s(a, X, ) = dr,.(a, X, d) U s %@, x,9)}) = (6,0,0,
Amax: {S(Q, X, q/) = 1|X €2, q, q/ € 6)}) = ?Z)max

2. ZminNZ =(QNO,INO, TNBO, {8(0, X,9)IX € Z;0,9 € Q
N©;8(d, X, q) = 8rpe (@ X, )82, X, dM) = (Q, I, T, ) = R

Then we consider the LQA%min = (@, ©, @, @). Similarly, it is easy to prove
that the rules
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hold. This examination shows that,,x and %, are the greatest and least
element of Latl(, 3, ®), respectively. Thus Lat (X, ®) is a bounded lattice.O
Corollary 3.13. For any LQAZ of Lat (I, ¥, ®), we have the inclusion rule:
Rmin " R " PRmax
Proof: Use Definition 3.7.
Now we can write the bounded lattice L&t E, ®) in the following form:
Lat(, T, ®) = (LQA(l, =, ®), N, U, Rmin, Xmax)
or also in the form:
Lat(, =, ®) = (LQA(l, =, ®), ", Rniny Rmax)
Itis meaningful to discuss the relationship between the basic latticd the

lattice of LQA defined onl( X, ®). We have the following. O

Theorem 3.14. Lat (I, X, ®) is a complete lattice if and only if | itself is a
complete lattice.
Proof: Consider the intersection of an arbitrary number of LQA:
NP2y Ri(Qi, iy Tiy 4)
R (ﬂ Q... is(q, x,d)a,q €[ Q. xe€%,8a xd)
i i i i=1

i=1 i=1 i=1

(= (@, x, q’)})
i=1

= RQ, I, T,4%) = Re
Note that

1. Sinceforeachitisl; € Q;, Ti € Q;, therefore,wehaveC Q, T C Q.
2. Since is a complete latticej(q, x, q') is also an element df

Therefore, %, is an element of Latl( X, ®). Lat (, X, ®) is a complete
lattice.

Ontheotherhand,ifLat( X, ®)is acomplete lattice, ther,, is an element
of Lat (I, X, ®). Thus,i(q, X, ') must be also an elementlofThis showd is a
complete lattice. O
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Theorem 3.15. Lat (I, X, ®) is a distributive lattice if and only if | itself is a
distributive lattice.

Proof: Let % = (Qj, i, Ti,4),i =1, 2, 3bethree LQA defined oh (&, ©).
Assume that is distributive, then:

PN (F2U Ra)
- (@N(@Ue)sN (U wAEUD)

[s@x @) 1xesia,a e Qi) (QQs)é@x )
(sr@ x ) () [srla, x ) [ sm(@ x )]}

- (1) U@es) (sn ) U s

(

(

nOR)U(mNT) [saxa)ixesiade(u )

Q1ﬂQ3> 8(a, %, q)
= [aRl(q, X, 0) () 8r.(a X, q/)] U [SRI(q, X, q)()r(a. X, q/)]})

= (10 o) U(F1 0 Ra)

This chain of reasoning can be also done backwards. Theréfgre (2, U
R3) = (RN RYU (RN Ry) ifand only ifa(buc) = (@l b) U@ c)
for any elements, b, andc of I.

Similarly we can prove that?; U (R, N R3) = (R1 U Ry) N (R U R3)
if and only ifa| J(b(c) = (alUb)M(alU c) for any elements, b, andc of I.

ThusifLat(, X, ®) is distributive if and only if is distributive. O

Theorem 3.16. Lat (I, X, ®) is a modular lattice if and only if | itself is a
modular lattice.

Proof: Let % = (Qj, i, Ti,4),i =1, 2, 3bethree LQA defined oh &, ®).
Assume that is modular, then:

e U (R0 (Fr U Ha))

- (@U@ (@U) HU(=N(:Us) =UENEU),
[s@x a)x e sa,q e (@ (Q:lUQs)) 8@ x a)

= or,(@, % @) |J [sr. (0, %, ) () (3r.a. % @) drta x, @) ]})
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According to Proposition 1.13, it is then
((QIU Qz) N (QlU Q3)7 (|1U |2> N (|1U |3), <T1UT2) N
(nUT). o x a)ix e Zia.q'e (QulJ Q2) ) (Q: U Q). 86 x. )

= [sr(a, x ) [ drta, x )| () [r 0, %, ) [ sm(a x, )] })
= (R1U Z) N (AU )

This chain of reasoning can be also done backwards. Theréefeke (%, N
(R1U R3)) = (R U R) N (R U R) if and only if al J(b((alJc)) =
(@alUb)N(alc) for any elements, b andc of I.

ThusifLat(, X, ®) is modular if and only if is modular. O

4. CONCLUSION

In this paper, we have reviewed the lattice-valued finite-state quantum au-
tomata introduced by Ying (2000a). We have redefined the acceptance degree
(recognizability in Ying's paper) and got a new definition of quantum automata.
We call the LQA defined in Ying (2000a) as LQA of type A and that in this paper
as LQA of type B. Based on the two automata operatiored+ introduced in
Ying's paper, we have shown that of the four automata operations (two for type
A and two for type B), only one of them follows the law of conservation of ac-
ceptance degree. This shows a basic difference between classical automata and
guantum ones.

In the effort of studying the structure of the set of LQA defined on the same
latticel and alphabeE, we get the conclusion that they do not form a lattice with
respect to the acceptance degree. LQA of type A form an upper semilattice with
the two operationsc and+. LQA of type B don't. The source of trouble is the
nondeterminacy. While trying to transform all nondeterministic LQA in equivalent
deterministic form, we met the problem that it is not always possible to transform
a nondeterministic LQA (no matter it is of type A or type B) into a deterministic
one. We have proved this fact rigorously. This may be a second essential difference
between classical and quantum automata.

We then defined another new type of LQA, the LQA oftype C. We have proved
that each (nondeterministic) LQA of type C can be transformed to an equivalent
deterministic one. With this result we were able to show that the LQA of type C
form a lower semilattice with respect to the acceptance degree. This is another
symmetry between different definitions of LQA acceptance degree.

The introduction of type B LQA has the advantage that it considers the pro-
cedure of accepting a string a by a nondeterministic LQA not as a mix of multiple
single path acceptance procedures, but as an integrated procedure, which proceeds
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concurrently in multiple directions. We call it distributed acceptance. This def-
inition provides a unified way of processing deterministic and nondeterministic
LQA. Its second advantage is to consider the acceptance of asteng x; . . . X,

as an evolutional procedure. Intuitionally, the degree of accepting. . . x; for

any 2< j < nis“less or equal” (in the sense of the partial order of the lattice) to
that of accepting X2 . . . X;—1. This evolutionary character of acceptance degree
calculation is further improved by introducing LQA of type C, where the accep-
tance degree of a transition is divided in portions and assigned to different exit
directions.

Finally, by reducing the size of equivalence group of LQA and concentrat-
ing on the structure properties of LQA we have succeeded in developing a true
lattice Lat (, X, ®) of LQA, where the most interesting thing is to discover the
relationship between the original latticand the lattice of LQA. We have proved
that the validity of many properties of the lattice L&t X, ®), such as whether
it is complete, distributive or modular, depend on the corresponding properties of
the original lattice. This may be the third essential difference between classical
automata and quantum ones.

Sine we have introduced lattices and semilattices for the quantum automata,
the next work may be to explore further the structure of these lattices and the
relations between the structure of original latti@nd that of the quantum lattice.
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