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We defined and studied three different types of lattice-valued finite state quantumau-
tomata (LQA) and four different kinds of LQA operations, discussed their advantages,
disadvantages, and various properties. There are four major results obtained in this
paper. First, no one of the above mentioned LQA follows the law of lattice value con-
servation. Second, the theorem of classical automata theory, that each nondeterministic
finite state automaton has an equivalent deterministic one, is not necessarily valid for
finite state quantum automata. Third, we proved the existence of semilattices and also
lattices formed by different types of LQA. Fourth, there are tight relations between
properties of the original latticel and those of thel -valued lattice formed by LQA.

KEY WORDS: quantum automata; lattice of quantum automata; operation of quantum
automata.

1. INTRODUCTION

Studies in quantum computing are of interest not only as explorations for
smart quantum algorithms and efficient implementations of quantum circuits, but
also as basic researches in quantum computation theory (Deutsch, 1985). As a
matter of fact, an appropriate logic interpretation of quantum mechanics has at-
tracted attention of many scientists already in the early years of last century. From
Heisenberg to Reichenbach (Reichenbach, 1998), scientists have recognized that
the classic (two-valued) logic can no longer serve as the basis of a modem theory
of quantum physics. It was von Neumann who has studied a new type of logic, the
quantum logic, where lattices are taken as mathematical models for such logics.
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Nowadays, with ever-increasing interest in quantum computing, different kinds of
quantum logics have been put forward (Greechie, 1981; Rawling and Selesnick,
2000). They are based on different principles, for example based on probability
(Moore and Crutchfield, 2000). Recently, Ying has studied lattice-valued quantum
logic and lattice-valued finite-state quantum automata and obtained a series of
results (Ying, 2000a,b). This paper is a further study on the latter with the aim of
providing more insight in the mathematical basis of quantum computation. As it is
well known, the theory of finite state automata is an essential part of the classical
theory of computation. We are convinced that the lattice-valued finite-state quan-
tum automata will also play an important role in developing a sound and powerful
theory of quantum computation.

For the subsequent use in this paper, we first give some essential facts about
lattices.

Following are two equivalent definitions of lattice:

Definition 1.1. (Cohn, 1981): A setL of elements forms a lattice, if

1. L is a partial ordered (⊆) set
2. For each pair of elementsa, b of L, there is a unique least upper bound sup

(a, b) and a unique largest lower bound inf (a, b), with the representation:

sup (a, b) = a
⋃

b, inf (a, b) = a
⋂

b.

Definition 1.2. (Hermes, 1955). A setL of elements forms a lattice if there are
two binary operations

⋃
and

⋂
defined onL, such that for all elementsa andb

of L:

1. The two commutative rules:

a
⋃

b = b
⋃

a,

a
⋂

b = b
⋂

a.

2. The two associative rules:(
a
⋂

b
)⋂

c = a
⋂(

b
⋂

c
)

(
a
⋃

b
)⋃

c = a
⋃(

b
⋃

c
)

3. and the two absorption rules:

a
⋂(

a
⋃

b
)
= a,

a
⋃(

a
⋂

b
)
= a

hold.
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Proposition 1.3. (Cohn, 1981; Hermes, 1955).Definitions 1.1 and 1.2 are
equivalent.

In this paper we will use the symboll to denote a lattice in general. The capital
letterL is only used to denote its element set.

Corollary 1.4. For a lattice l, and finite set S of its elements has a unique least
upper boundsup (S) and a unique largest lower boundinf (S), where

sup (S) =
⋃
{x|x ∈ S}, inf(S) =

⋂
{x|x ∈ S}

Both sup (S) and inf (S) belong toL.

Definition 1.5. If l has a greatest element sup (l ) and a least element inf (l ), then
l is called a bounded lattice. If any (finite or infinite) setS of the elements of a
latticel has a least upper bound sup (S) and a greatest lower bound inf (S), which
belong toL, thenl is called a complete lattice.

In this paper we concern only bounded lattices and will use the notation
l = (L ,⊆, 0, 1) to describe a lattice, whereL is the set of lattice elements,⊆
describes the partial order of lattice elements, 0 is the least element and 1 the
greatest element. Due to Proposition 1.3, a lattice can be also represented in form
l = (L ,

⋂
,
⋃

, 0.1).

Definition 1.6. If for any elementsa, b, andc of a latticel , the following two
distributive rules hold:

a
⋂(

b
⋃

c
)
=
(
a
⋂

b
)⋃(

a
⋂

c
)

,

a
⋃(

b
⋂

c
)
=
(
a
⋃

b
)⋂(

a
⋃

c
)

,

then it is called a distributive lattice.

Proposition 1.7. The two equations of Definition 1.6 are equivalent, i.e., any one
of them can be inferred from another.

Definition 1.8. If for any elements,a, b, andc of a latticel , the following modular
rule holds:

a ⊆ c➔ a
⋃(

b
⋂

c
)
=
(
a
⋃

b
)⋂

c

thenl is called a modular lattice.
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Proposition 1.9. For any elements a, b, and c of a lattice l, the following inclusion
rules hold: (

a
⋂

b
)⋃(

a
⋂

c
)
⊆ a

⋂(
b
⋃

c
)

a
⋃(

b
⋂

c
)
⊆
(
a
⋃

b
)⋂(

a
⋃

c
)

Proposition 1.10. From Propositions 1.7 and 1.9 follows, that the lattice l is a
distributive lattice if one of the following inclusion rules holds:

a
⋂(

b
⋃

c
)
⊆
(
a
⋂

b
)⋃(

a
⋂

c
)

,(
a
⋃

b
)⋂(

a
⋃

c
)
⊆ a

⋃(
b
⋂

c
)
.

Proposition 1.11. For any elements a, b, and c of a lattice l, the following
inclusion rule holds:

a
⋃(

b
⋂

c
)
⊆
(
a
⋃

b
)⋂

c

Proposition 1.12. From Proposition 1.11 and Definition 1.8 follows, that the
lattice l is a modular lattice if for any elements a, b, and c of l, the following
inclusion rule holds:

a ⊆ c➔

(
a
⋃

b
)⋂

c ⊆ a
⋃(

b
⋂

c
)

Proposition 1.13. A lattice l is modular if and only if for any elements a, b, and
c of l,

a
⋃(

b
⋂(

a
⋃

c
))
=
(
a
⋃

b
)⋂(

a
⋃

c
)

2. LATTICE-VALUED FINITE-STATE QUANTUM AUTOMATA

First we repeat the definition of a lattice-valued finite-state quantum automa-
ton, LQA for short, defined by Ying (2000a) in a slightly different notation. At the
same time we will introduce a new version of LQA and compare their acceptance
characteristics.

Definition 2.1. Let l = (L ,⊆, 0, 1) be a lattice,6 be a finite alphabet, called the
input alphabet. An LQAR defined on (l ,6) is a quadrupleR = (Q, I , T, ),
where I ⊆ Q is a set of initial states,T ⊆ Q is a set of terminating states,
is a set ofl -valued predicates defined onQ×6 × Q: for eachq1, q2 ∈ Q and
x ∈ 6, δ(q1, x, q2) ∈ is an element ofl . Note that in only thoseδ(q1, x, q2),
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which are not equal to 0 (least element ofl ) are listed in .δ(q1, x, q2) is called
the acceptance degree ofx by R that the stateq1 is transformed toq2 when the
symbol x is input. The LQA are classified in type A LQA and type B LQA in
Definition 2.4 according to the way the acceptance degree is calculated.

Definition 2.2. Let R = (Q, I , T ) be a LQA defined on (l ,6). For eachi , j ,
whereδ(qi , x, qj ) 6= 0, where 0 is the least element of the latticel , the tripletqi x qj

is called a transition ofR . A finite connection of transitionsq0 x1q1x2 · · ·qn−1xnqn

is called a transition sequence ofR where allq belong toQ and allx belong to
6. If besidesq0 belongs toI and qn belongs toT , then we say the transition
sequence is successful and is called a single pathw of R . We call the symbol
sequences= x1 x2 · · · xn the label ofw, or an accepted string of the automaton
R . The acceptance degree ofs by this single path is defined as: Acceptw (R , s) =
∩n− 1

i = 0
δ(qi , xi+1, qi+1), where

⋂
is the inf operation of the latticel .

Since the automaton is in general non deterministic, the same label may be
contained in more than one path. We have yet to define the acceptance degree in
general.

Proposition 2.3. LetR = (Q, I , T, ) be a LQA defined on(l ,6), s= x1x2 · · ·
xn be a string of6∗. Let T(R , s) = {w | w is a path ofR , s is the label of w}
denote the “distributed path” inR accepting s. Then|T(R , s)| is finite for every s.

The proof is easy and will not be paraphrased here.
With help of this proposition we are able to give the following:

Definition 2.4. LetR ,sandT(R , s) be defined as above. The general acceptance
degree ofs by R is defined in two different ways:

1. AcceptA(R, s) =
⋃

w∈T(R,s)

n−1⋂
i=0

δ(qw,i , xi+1, qw,i+1)

2. AcceptB(R, s) =
n−1⋂
i=0

⋃
w∈T(R,s)

δ(qw,i , xi+1, qw,i+1)

whereqw,i , i = 0, 1, 2,. . . , n, are the states traversed by the pathw. LQA defined
on the basis of AcceptA and AcceptB are called LQA of type A and type B. In word,
in the case of type A, we first calculate the acceptance degree ofs for each single
path, then unite them together. In the case of type B, we take the first transition
of all paths inT(R , s), unite their acceptance degreeδ(qw,0, x1, qw,1) together by
the sup operation

⋃
. And then we take the second, third,. . . transition of all paths

and unite their acceptance degrees separately. At last, we perform the inf operation⋂
on all these united values and get the wanted general acceptance degree ofs by

R In any case, the language accepted byR is {(s, Accept(R , s)) | s ∈ 6∗}.
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Fig. 1. ALQA with four states.

Example 2.5. LetR = ({q0, q1, q2, q3}, {q0}, {q2, q3}, {δ(q0, x, q1) = a, δ(q1, y,
q2) = b, δ(q2, y, q3) = c}). There are two paths for accepting the stringxy in this
automaton:w1 = q0 x q1 y q2 andw2 = q0 x q1 y q3. The single path acceptance
degrees are Acceptw1(R , xy) = a

⋂
b and Acceptw2(R , xy) = a

⋂
c respec-

tively. The general acceptance degree of type A is AcceptA(R , xy) = (a
⋂

b)
⋃

(a
⋂

c). On the other hand, the general acceptance degree of type B is AcceptB
(R , xy) = a

⋂
(b
⋃

c). See Fig. 1 for an illustration.
According to Proposition 1.9, we have AcceptA(R , xy) = (a

⋂
b)
⋃

(a
⋂

c)
⊆ a

⋂
(b
⋃

c) = AcceptB(R , xy). In fact, we have the more general

Proposition 2.6. For any LQAR the general acceptance degrees (called rec-
ognizability in Ying (2000a)) calculated according to rules of type A and type B
have the relationship:

1. AcceptA(R , s) ⊆ AcceptB(R , s)
2. The inclusion symbol⊆ can be replaced by the equation symbol= if

R is a deterministic LQA.

That means, the type B LQA is more “generous” in nondeterministically
accepting a string from6∗.

Proof: This proposition can be proved based on a mathematical induction with
help of Proposition 1.9, can also follow directly from Lemma 2.14 given
below. ¤

The remaining discussion of this section relates only to LQA of type B, unless
it is otherwise stated.
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Note that any of the four componentsQ, I , T, , of R in Definition 2.1 can
be empty. In this case the automatonR accepts no sentence from6∗ no matter
whether it is of types A or B. Any suchR is called an empty automaton.

Based on the concept of acceptance degree, it is possible to define a partial
order for the quantum automata.

Definition 2.7. AssumeR 1 andR 2 are two LQA (both of type A or both of type
B) defined on (1,6). If

For all s ∈ 6∗, Accept(R 1, s) ⊆ Accept(R 2, s),
Then we say thatR 1,⊆′ R 2.

Proposition 2.8. The inclusion relation given in Definition 2.7 defines a partial
order.

Definition 2.9. Two LQA R 1 andR 2 defined on the same (l ,6) (both of types A
or B) are called semantically equivalent if for anys of 6∗,

Accept(R 1, s) ⊆ Accept(R 2, s), Accept(R 2, s) ⊆ Accept(R 1, s),

are both valid. In this case we use the notation:

Accept(R 1, s) = Accept(R 2, s), or R 1 ≈ R 2

to represent their relationship, where the equation symbol=means the identity of
lattice elements inl .

Since we have established a partial order for the LQA, we are now interested
in exploring the question: is it possible to build a lattice with the LQA themselves
as lattice elements? In the following we will introduce and discuss some binary
operations on LQA and see whether they can serve as the supremum and infimum
operations of the wanted lattice. First we review two operations, which were defined
in Ying (2000b).

Definition 2.10. Let R 1 = (Q1, I1, T1, 1) andR2 = (Q2, I2, T2, 2) be two
LQA defined on (l ,6). The productR 1×R 2 of R 1 and R 2 is also a LQA
defined on (l ,6), called the product automaton, with

R 1×R 2 = R 3 = (Q3, I3, T3, 3), where

Q3 = Q1× Q2

I3 = I1× I2

T3 = T1× T2

3 =
{
δ(q, x, q′) | q = (q1, q2); q′ = (q′1, q′2); q1, q′1 ∈ Q1; q2, q′2 ∈ Q2;

x, y ∈ 6, δ(q, x, q′) = δR1(q1, x, q′1)
⋂
δR2(q2, x, q′2) 6= 0

}



P1: GCR

International Journal of Theoretical Physics [ijtp] pp937-ijtp-470298 September 26, 2003 16:28 Style file version May 30th, 2002

1442 Lu and Zheng

Definition 2.11. Let R 1 = (Q1, I1, T1, 1) andR 2 = (Q2, I2, T2, 2) be two
LQA defined on (l ,6), whereQ1 ∩ Q2 = ®. The sumR 1+R 2 of R 1 andR 2

is also a LQA defined on (l ,6), called the sum automaton, with

R 1+R 2 = R 3 = (Q3, I3, T3, 3), where

Q3 = Q1
⋃

Q2

I3 = I1
⋃

I2

T3 = T1
⋃

T2

3 = 1
⋃

2

Theorem 2.12. (Ying, 2000b). For any s∈ 6∗

AcceptA(R 1×R 2, s) ⊆ AcceptA(R 1, s)
⋂

AcceptA(R 2, s)

Theorem 2.13. (Ying, 2000b). For any s∈ 6∗,
AcceptA(R 1+R 2, s) = AcceptA(R 1, s)

⋃
AcceptA(R 2, s)

So, the LQA of type A form a upper semilattice with respect to acceptance
degree and sum operation. But they do not form a lower semilattice.

We will prove similar results for LQA of type B. In order to do that, we need
a lemma.

Lemma 2.14. Assume all ai , j are elements of the same lattice, then⋃
j1, j2,..., jn is an ordered

n−tuple of numbers from (1,2,...,m)

(
a1, j1

⋂
a2, j2

⋂
· · ·
⋂

an, jn

)
⊆

n⋂
i=1

m⋃
j=1

ai , j

Proof: Since for an arbitaryi ,

ai , ji ⊆
m⋃

j=1

ai , j

therefore, for any (fixed) combination of (j1, j2, . . . , jn),(
a1, j1

⋂
a2, j2

⋂
· · ·
⋂

an, jn

)
⊆

n⋂
i=1

m⋃
j=1

ai , j

Take the union over all possible combinations of (j1, j2, . . . , jn) and then we
get the lemma proved. ¤
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Theorem 2.15. For any s∈ 6∗
AcceptB(R 1×R 2, s) ⊆ AcceptB(R 1, s)

⋂
AcceptB(R 2, s)

Proof: Let s= x1x2 . . . xn

AcceptB(R 1×R 2, s)

=
n−1⋂
i=0

⋃
w1∈T(R1,s),
w2∈T(R2,s)

[
δR1(qw1,i , xi+1, qw1,i+1)

⋂
δR2(qw2,i , xi+1, qw2,i+1)

]
with help of Lemma 2.14

⊆
n−1⋂
i=0

{[ ⋃
w1∈T(R1,s)

δR1(qw1,i , xi+1, qw1,i+1)

]⋂[ ⋃
w2∈T(R2,s)

δR2(qw2,i , xi+1, qw2,i+1)

]}

=
[

n−1⋂
i=0

⋃
w1∈T(R1,s)

δR1(qw1,i , xi+1, qw1,i+1)

]⋂[
n−1⋂
i=0

⋃
w2∈T(R2,s)

δR2(qw2,i , xi+1, qw2,i+1)

]

= AcceptB(R 1, s)
⋂

AcceptB(R 2, s).

¤

Theorem 2.16. For any s∈ 6∗,
AcceptB(R 1, s)

⋃
AcceptB(R 2, s) ⊆ AcceptB(R 1+R 2, s)

Proof: Lets= x1x2 . . . xn. Use a similar idea of the proof procedure of Theorem
2.15 we have:

AcceptB(R 1, s)
⋃

AcceptB(R 2, s)

=
[

n−1⋂
i=0

⋃
w1∈T(R1,s)

δR1(qw1,i , xi+1, qw1,i+1)

]⋃[
n−1⋂
i=0

⋃
w2∈T(R2,s)

δR2(qw2,i , xi+1, qw2,i+1)

]

⊆
⋂

i=0,1,...,n−1
j=0,1,...,n−1

{[ ⋃
w1∈T(R1,s)

δR1(qw1,i , xi+1, qw1,i+1)

]⋃[ ⋃
w2∈T(R2,s)

δR2(qw2, j , xj+1, qw2, j+1)

]}

⊆
⋂

i=0,1,...,n−1

{[ ⋃
w1∈T(R1,s)

δR1(qw1,i , xi+1, qw1,i+1)

]⋃[ ⋃
w2∈T(R2,s)

δR2(qw2,i , xi+1, qw2,i+1)

]}
= AcceptB(R 1 +R 2, s)

¤

But, in order to justify their role in defining a lattice of LQA, we should
be able to prove additionally the supremum and infimum properties of these two
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Fig. 2. The product automaton.

operations. Unfortunately, apart from the sum operation of type A, all other three
operations (product operation of types A and B, sum operation of type B) do not
have this property. For product operation of types A and B, we can convince us
about this conclusion from the following example.

Example 2.17. Let R 1 = ({q0, q1, q2}, {q0}, {q1, q2}, {δ1(q0, x, q1) = a, δ1(q0,
x, q2) = b}) andR 2 = ({q0, q1}, {q0},{q1}, {δ1(q0, x, q1) = c}) be two LQA. Then
according to definitionR 1×R 2 = ({(q0, q0), (q0, q1), (q1, q0), (q1, q1), (q2, q0),
(q2, q1)}, {(q0, q0)}, {(q1, q1), (q2, q1)}, {δ × ((q0, q0), x, (q1, q1)) = a

⋂
c, δ ×

((q0, q0), x, (q2, q1)) = b
⋂

c}). If the lattice l = ({a, b, c, 1, 0}, {0⊆ a, b, c ⊆
1}, 0, 1) (see Fig. 2(d)), then it is Accept (R 1×R 2, x) = (a

⋂
c)
⋃

(b
⋂

c) =
0⊆ c = (a

⋃
b)
⋂

c = Accept(R 1, x)
⋂

Accept(R 2, x) and 06= c. This shows
that R 1×R 2 is not the largest lower bound ofR 1 and R 2, in the sense of
acceptance degree.

Note that the conclusion obtained by this example is not only valid for type
A, but also for type B LQA, because the two types of LQA do not differ from each
other with respect to this example.

More generally, it is possible thatR 1 and R 2 have no states in common
and thus the intersection automaton is hard to define. In this case we may find
examples, which show that the intersection is not the largest lower bound ofR 1
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and R 2 in the sense of acceptance degree. This is an evidence that we should
consider modifying the definition of quantum automaton.

In order to find a possible solution for this problem, let us have a closer look
at the source of difficulty we have met. First, the old definition of sum and product
is based on structure operation on the two operand automata. This definition has a
syntactic character and is not suitable for defining automata intersection based on
acceptance degree, which is essentially a semantic affair. Second, the old definition
of sum and product is based on nondeterministic quantum automata, which have
the difficulty of not following the distributive rule of lattice operation. Therefore,
our new idea is first to try to transform the quantum automata into deterministic
form and then try to find a suitable form of automata operation.

Thus, the first problem we now meet is the question of whether there exists
always an equivalent deterministic LQA for each nondeterministic LQA? If the
answer is yes, then how do we calculate it? It is well known that each classical
nondeterministic automaton has an equivalent deterministic one. But this is not
necessary true for LQA.

Definition 2.18. An LQA R is called proper nondeterministic if it is nondeter-
ministic and there exists no corresponding deterministic automatonR ′ such that
R andR ′ are semantically equivalent. That is:

is (R ′, proper nondeterministic)≡∼∃R ′, is(R ′, deterministic),∀s∈ 6∗,
Accept(R , s) = Accept(R ′, s)

Theorem 2.19. There exist proper nondeterministic LQA.

Proof: Consider the LQAR = ({q0, q1, q2, q3}, {q0}, {q2, q3}, {δ(q0, x, q1) =
a, δ(q1, y, q2) = a, δ(q0, x, q3) = b}), which is nondeterministic. See Fig. 3(a).
The lattice used isl = ({a, b, 0, 1}, {a ⊆ 1, b ⊆ 1, 0⊆ a, 0⊆ b}, 0, 1). See
Fig. 3(b).

For both types A and B, the language accepted byR is {(xy, a), (x, b)}.
If there were a deterministic LQAR ′ such thatR ≈ R ′, then becauseR ′ is
deterministic, it has only one initial state. Let’s call itq′0. SinceR ′ must accept the
sentencex to the degreeb, there must be a terminating stateq′1, and the transition
δ(q′0, x, q′1) = b.q′1 should not coincide withq′0 because otherwise there would be a
loop and sentences of arbitrary length would be accepted. On the other hand, since
R ′ must accept the sentencexy to the degreea, there must be another terminating
stateq′2, which is also a state separated fromq′0 andq′1. Assumeδ(q′1, y, q′2) = g,
where the valueg is to be determined. The following equation should be satisfied:

b
⋂

g = a
⋂

a = a
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Fig. 3. Proper nondeterministic LQA.

But from Fig. 3(b) it is easy to see that this equation can never be fulfilled. This
fact refutes the possibility of existence of an equivalent deterministicR ′. ¤

Note that the existence of proper nondeterministic LQA may be a character-
istic property of quantum automata versus the traditional ones.

Thus we have to modify our definition of LQA and to define a new type, the
type C of LQA with the hope that this new kind of LQA will help us to find an
equivalent deterministic LQA for each nondeterministic one and thus to enable the
construction of the lattice theoretic union and intersection operations.

Definition 2.20. A lattice valued quantum automaton of type C defined on (l ,6)
is a quadrupleR = (Q, I , T, {δ(q, x, q′, out)> 0|x ∈ 6; out∈ 6 ∪ {ε}; q, q′ ∈
Q}) whereQ is the set of states,I ⊆ Q is the set of initial states,T ⊆ Q is the
set of terminating states. The notation “out” is either a symbol of6 or the empty
symbolε. Eachδ(q, x, q′, out) is an element of the latticel , which means that
portion of the degree of accepting the input symbolx, which is assigned to the
case that the next input symboly ∈ 6 (if out = y) or the total acceptance degree
of this transition (if out= empty andq′ is a derminating state), and transforming
the state fromq to q′. The lattice union ofδ(q, x, q′, y) for all possibley is then
the general degree of accepting the input symbolx.

The new definition is a refinement of the old one. It divides the acceptance
degree to different exits of the fan out of the stateq′.

An additional advantage of this definition is the ability of defining partial
acceptance.

Definition 2.21. Letw = q0 x1 q1 . . .qn−1 xn qn be a path of the LQAR whereq0

is an initial state andqn is a terminating state. Then each strings= x0 x1 . . . xi ,
1≤ i ≤ n, is partially accepted byR . We use the notation P-Accept (R , s) to
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Fig. 4. LQA of type C.

denote partial acceptance. A partially accepted string is (wholly) accepted by a
LQA if and only if i = n.

Example 2.22. Let 6 = {x, y, z, t}, R = ({q0, q1, q2, q3, q4, q5, q6}, {q0}, {q3,
q4, q5, q6}, {δ(q0, x, q1, y) = a, δ(q0, x, q1, z) = b, δ(q1, y, q3, ) = d, δ(q1, y,
q4, ) = e, δ(q1, z, q5, ) = f, δ(q0, y, q2, t) = c, δ(q2, y, q6, ) = g}). See Fig. 4.

In this example, we have P-Acceptc(R , x) = a
⋃

b
⋃

c, Acceptc(R , xy) =
a
⋂

(d
⋃

e), Acceptc(R , xz) = b
⋂

f, Acceptc(R , xt) = c
⋂

g.

Here it is easy to see that ifa = b (i.e. the state transitions (q1→ q3, q1→ q4

and q1→ q5 share the same “heritage” from the previous transitionq0→ q1)
then the resulting acceptance degrees coincide with those calculated with our old
definition given in last section.

Now we will give an algorithm for transforming any nondeterministic LQA
into an equivalent deterministic LQA. This algorithm is based on a classical one
(e.g. see (Hopcroft and Ullman, 1979)) and modified according to the character-
istics of our LQA definition.

Algorithm 2.23. (Delete nondeterminacy)

1. Given an LQAR = (Q, I , T, ) of type C.
2. Construct Q′ = ℘(Q) = {S}, where℘ means power set.
3. Let I ′ = {I }
4. Let T′ = {S|S∈ Q′, S∩ T 6= ®}
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5. Let ′ = { ′1 ∪ ′
2|x, y ∈ 6}, where

′
1 =

{
δ(S, x, S′, y) =

⋃
i

{
ai |∃ q ∈ S, q′ ∈ S′, δ(q, x, q′, y) = ai ∈

}}

′
2 =

{
δ(S, x, S′, ) =

⋃
i

{
ai |∃ q ∈ S, q′ ∈ S′, q′ ∈ T, δ(q, x, q′,) = ai ∈

}}

Note that
⋃

i is a lattice union operation while∪ is set union operation.

Proposition 2.24. The LQAR ′ = (Q′, I ′, T ′, ′) is equivalent toR with re-
spect to accepting strings from6∗.

Proof: Use mathematical induction. ¤

In the sequel, we consider the process of producing a deterministic product
LQA of type C by using the above algorithm.

Definition 2.25. LetR 1 = (Q1, I1 = {q1,0}, T1, 1) andR2 = (Q2, I2 = {q2,0},
T2, 2) be two deterministic LQA of type C on (l ,6). The productR 1×R 2 of
R 1 andR 2 is also a deterministic LQA of type C defined on (l ,6), called the
product automation, with

R 1×R 2 = R 3 = (Q3, I3, T3, 3), where

Q3 = Q1× Q2

I3 = I1× I2(= (q1,0, q2,0))

I3 = I1× T2

3 =
{
δ(q, x, q′, y) |q = (q1, q2); q′ = (q′1, q′2); q1, q′1 ∈ Q1; q2, q′2 ∈ Q2; x, y ∈

6, δ(q, x, q′, y) = δR1(q1, x, q′1, y)
⋂
δR1(q2, x, q′2, y) 6= 0

}⋃
{δ(q, x, q′, ) | q = (q1, q2); q′ = (q′1, q′2); q1 ∈ Q1; q′1 ∈ T1; q2 ∈ Q2; q′2 ∈
T2; x ∈ 6, δ(q, x, q′, ) = δR1(q1, x, q′1, )

⋂
δR2(q2, x, q′2, ) 6= 0

}
Proposition 2.26. ∀s∈6∗, Acceptc(R 1×R 2, s) = Acceptc (R1, s)

⋂
Acceptc

(R2, s)

Proof: Assume s= x1 x2 . . . xn, w1 = q1,0 x1 q1,1 . . .q1,n−1 xn q1,n and w2 =
q2,0 x1 q2,1 . . .q2,n−1 xn q2,n are the corresponding paths inR1 andR2 respectively.



P1: GCR

International Journal of Theoretical Physics [ijtp] pp937-ijtp-470298 September 26, 2003 16:28 Style file version May 30th, 2002

Lattices of Quantum Automata 1449

First we consider the case ofn = 1. Since bothR1 andR2 are deterministic, we
have

Acceptc(R 1, s)
⋂

Acceptc(R 2, s)

= δw1(q1,0, x1, q1,1,)
⋂
δw2(q2,0, x1, q2,1,) = Acceptc(R 1×R 2, s)

whereq1,0 ∈ I1; q1,1 ∈ T1; q2,0 ∈ I2; q2,1 ∈ T2;
For an arbitraryn > 1 we have:

Acceptc(R 1, s)
⋂

Acceptc(R 2, s)

=
[

n−2⋂
i=0

δw1(q1,i , xi+1, q1,i+1, xi+2)

]⋂
δw1(q1,n−1, xn, q1,n, )

⋂
[

n−2⋂
i=0

δw2(q2,i , xi+1, q2,i+1, xi+2)

]⋂
δw2(q2,n−1, xn, q2,n, )

=
[

n−2⋂
i=0

[
δw1(q1,i , xi+1, q1,i+1, xi+2)

⋂
δw2(q2,i , xi+1, q2,i+1, xi+2)

]]
⋂[

δw1(q1,n−1, xn, q1,n, )
⋂
δw2(q2,n−1, xn, q2,n, )

]
= Acceptc(R 1×R 2, s)

¤

Therefore, the LQA of type C form a lower semilattice with respect to ac-
ceptance degree and the product operation×. But they do not form an upper
lattice due to Theorem 2.16 Taking the notice after Theorem 2.13 in consid-
eration, we see there is a symmetry between types A and C automata. In or-
der to get a true lattice of LQA, we need to find another way of defining LQA
lattice.

3. LAT ( l ,Σ,Θ): A LATTICE OF LQA

The reason that the LQA described in last section do not form a lattice is
the grain size of their equivalent groups, which is too large. LQA accepting in-
put strings to the same degree may have quite different structures. In this sec-
tion, we will limit the variety of LQA structures a little bit and will see that
this limitation helps to develop a true lattice of quantum automata. As the first
step, we will modify our definition slightly such that the states the LQA may
take form a fixed state space. We rephrase the definition of a LQA with this
modification.
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Definition 3.1. Let l = (L ,⊆ 0, 1) be a lattice,6 be a finite alphabet, called
the input alphabet,2 be a finite set of states, called the state space. An LQAR

defined on (l ,6,2) is a quadrupleR = (Q, I , T, ), whereQ ⊆ 2 is a set of
states,I ⊆ Q is a set of initial states,T ⊆ Q is a set of terminating states,
is a set ofl valued predicates defined onQ×6 × Q: for eachq1, q2 ∈ Q and
x ∈ 6, δ(q1, x, q2) ∈ is an element ofl . Note that in only thoseδ(q1, x, q2),
which are not equal to 0 (least element ofl ) are listed in · δ(q1, x, q2) is called
the acceptance degree ofx by R that the stateq1 is transferred toq2 when the
symbolx is inputted. The LQA are classified in type A LQA and type B LQA in
Definition 2.4 according to the way the acceptance degree is calculated.

Apart from introducing the state space2, almost all other definitions about
LQA in the last section are kept unchanged here. Except that we will follow another
way of defining a lattice of quantum automata. Remember in last section, we started
from defining the partial order⊆′ and then tried to use it to define the supremum
and infimum operation for the wanted lattice of quantum automata. In this section,
we will go the opposite way. We first define the two lattice operations∪, ∩ for the
wanted automata lattice and prove that they fulfil the rules given in Definition 1.2
Then we define a partial order⊆′′ based on these two operations. Finally, we will
prove that the new partial order is a suborder of the old one (⊆′). That means, if
R 1 ⊆′′ R 2 then it is alsoR 1 ⊆′ R 2, but not vice versa. During the process of
developing the theory, we will give proofs both for types A and B LQA.

Definition 3.2. Let R 1 = (Q1, I1, T1, 1) and R 2 = (Q2, I2, T2, 2) be two
LQA on (l ,6,2). The intersectionR 1 ∩R 2 of R 1 and R 2 is also a LQA
defined on (l ,6,2), called the intersection automation, with

R 1 ∩R 2 = R 3 = (Q3, I3, T3, 3), where

Q3 = Q1
⋂

Q2

I3 = I1
⋂

I2

T3 = T1
⋂

T2

3 =
{
δ(q, x, q′) | q, q′ ∈ Q3; x ∈ 61

⋂
62, δ(q, x, q′)

= δR1(q, x, q′)
⋂
δR2(q, x, q′) 6= 0

}

Definition 3.3. Let R 1 = (Q1, I1, T1, 1) and R 2 = (Q2, I2, T2, 2) be two
LQA on (l ,6,2). The unionR 1 ∪R 2 of R 1 andR 2 is also a LQA defined
on (l ,6,2), called the union automation, with

R 1 ∪R 2 = R 3 = (Q3, I3, T3, 3), where
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Q3 = Q1
⋃

Q2

I3 = I1
⋃

I2

T3 = T1
⋃

T2

3 =
{
δ(q, x, q′)|q, q′ ∈ Q3; x ∈ 6, δ(q, x, q′)

= δR1(q, x, q′)
⋃
δR2(q, x, q′) 6= 0

}
Note that a union automation is in general not equal to a sum automation

defined in last section, since in Definition 3.3, we have removed the limitation
that Q1

⋂
Q2 = ®. In addition, these two operations follow the rules of lattice

operation defined in first section, as the two following theorems illustrate.
The reader is reminded once again that

⋃
and

⋂
are lattice operations for

the latticel , ∪ and∩ are lattice operations for our automata lattice, while
⋃

and
⋂

are set operations.

Theorem 3.4. Let R 1, R 2, andR 3 be three LQA defined on(l ,6,2), then:

1. R 1 ∩R 2 = R 2 ∩R 1

2. R 1 ∪R 2 = R 2 ∪R 1

3. (R 1 ∩R 2) ∩R 3 = R 1 ∩ (R 2 ∩R 3)
4. (R 1 ∪R 2) ∪R 3 = R 1 ∪ (R 2 ∪R 3)

Proof: From the definition of intersection automaton and union automaton we
know that the validity of the first two points of this theorem are true. We will
prove only the third point. LetR i = (Qi , Ii , Ti , i ), i = 1, 2, 3 by arbitrary LQA
defined on (l ,6,2), then

(R 1 ∩R 2) ∩R 3

=
((

Q1

⋂
Q2

)⋂
Q3,

(
I1

⋂
I2

)⋂
I3,
(

T1

⋂
T2

)⋂
T3,

{
δ(q, x, q′) | x ∈

6, q, q′ ∈
(

Q1

⋂
Q2

)⋂
Q3, δ(q, x, q′)

=
(
δR1(q, x, q′)

⋂(
δR2(q, x, q′

))⋂
δR3(q, x, q′)

})
=
(

Q1

⋂(
Q2

⋂
Q3

)
, I1

⋂(
I2

⋂
I3

)
, T1

⋂(
T2

⋂
T3

)
,

×
{
δ(q, x, q′) | x ∈ 6, q, q′ ∈ Q1

⋂(
Q2

⋂
Q3

)
, δ(q, x, q′)

= δR1(q, x, q′)
⋂(

δR2(q, x, q′)
⋂
δR3(q, x, q′)

)})
= R 1 ∩ (R 2 ∩R 3)

¤
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Theorem 3.5. Let R 1 andR 2 be arbitrary LQA defined on(l ,6,2), then:

1. (R 1 ∩R 2) ∪R 2 = R 2

2. (R 1 ∪R 2) ∩R 2 = R 2

Proof: We prove only the first assertion. LetR i = (Qi , Ii , Ti , i ), i = 1, 2 be
arbitrary LQA defined on (l ,6,2), then

(R 1 ∩R 2) ∪R 2 =
((

Q1

⋂
Q2

)⋃
Q2,

(
I1

⋂
I2

)⋃
I2,
(
T1

⋂
T2

)⋃
T2,{

δ(q, x, q′) | x ∈ 6, q, q′ ∈
(

Q1

⋂
Q2

)⋃
Q2, δ(q, x, q′)

=
(
δR1(q, x, q′)

⋂
δR2(q, x, q′)

)⋃
δR2(q, x, q′)

})
=
(

Q2, I2, T2,
{
δ(q, x, q′) | x ∈ 6, q, q′ ∈ Q2, δ(q, x, q′) = δR2(q, x, q′)

})
= R 2

Similarly, we can prove (R 1 ∪R 2) ∩R 2 = R 2 ¤

Note that we have used the same symbols for the intersection and union of
sets and of automata, respectively. There should be no confusion.

Theorem 3.6. The lattice-valued finite-state quantum automata defined on
(l ,6,2) form a lattice.

Proof: By summarizing the results of Theorems 3.4 and 3.5 we can see that they
have fulfilled all rules specified in Definition 1.2. Therefore, these automata form a
lattice. We call it Lat (l ,6,2). ¤

As usually, we can use the two operations∩ and∪ to define the partial order
of lattice elements in Lat (l ,6,2).

Definition 3.7. For arbitrary LQAR 1 andR 2, we define

R 1 ⊆′′ R 2 if and only if
(

R 1 ∩R 2
) = R 1

Corollary 3.8. ⊆′′ is a partial order

Proof: We first have to prove that ifR 1 ⊆′′ R 2 andR 2 ⊆′′ R 3 thenR 1 ⊆′′
R 3. Assume that (R 1 ∩R 2) = R 1 and (R 2 ∩R 3) = R 2 then

R 1 ∩R 3 =
(

R 1 ∩R 2
) ∩R 3 = R 1 ∩

(
R 2 ∩R 3

)=R 1 ∩R 2 = R 1
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Thus the transitivity rule holds. The second thing is to prove that

if R 1 ⊆′′ R 2 andR 2 ⊆′′ R 1 thenR 1 = R 2.

This means to prove that if (R 1 ∩R 2) = R 1 and (R 2 ∩R 1) = R 2 thenR 1 =
R 2, which is obvious. ¤

It is easy to prove (by using duality rule) that Definition 3.7 is equivalent to
the following form:

R 1 ⊆′′ R 2 if and only if (R 1 ∪R 2) = R 2

We have used the concept of acceptance degree to define a partial order
⊆′ between the lattice valued automata in last section. On the other hand, we
have also defined the two lattice operations∩ and∪ for these automata. Now
we will inspect the relation between the two partial orders⊆′ and⊆′′. In or-
der to do that, we need the following theorems for types A and B LQA,
respectively.

Theorem 3.9. For any s∈ 6∗

AcceptA(R 1 ∩R 2, s) ⊆ AcceptA(R 1, s)
⋂

AcceptA(R 2, s)

Proof: Let s= x1 x2 · · · xn

AcceptA
(
R 1 ∩R 2, s

)
=

⋃
w∈T(R1

⋂
R2,s)

n−1⋂
i=0

(
δR1(qw,i , xi+1, qw,i+1)

⋂
δR2(qw,i , xi+1, qw,i+1)

)

=
⋃

w∈T(R1∩R2,s)

[(
n−1⋂
i=0

δR1(qw,i , xi+1, qw,i+1)

)⋂(
n−1⋂
i=0

δR2(qw,i , xi+1, qw,i+1)

)]

⊆
[ ⋃

w∈T(R1∩R2,s)

[
n−1⋂
i=0

δR1(qw,i , xi+1, qw,i+1)

]]⋂[ ⋃
w∈T(R1∩R2,s)

[
n−1⋂
i=0

δR2(qw,i , xi+1, qw,i+1)

]]

⊆
[ ⋃

w∈T(R1,s)

[
n−1⋂
i=0

δR1(qw,i , xi+1, qw,i+1)

]]⋂[ ⋃
w∈T(R2,s)

[
n−1⋂
i=0

δR2(qw,i , xi+1, qw,i+1)

]]

= AcceptA(R 1, s)
⋂

AcceptA(R 2, s)

¤

Theorem 3.10. For any s∈ 6∗

AcceptB(R 1 ∩R 2, s) ⊆ AcceptB(R 1, s)
⋂

AcceptB(R 2, s)
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Proof: Let s= x1 x2 · · · xn

AcceptB(R 1 ∩R 2, s)

=
n−1⋂
i=0

⋃
w∈T(R1∩R2,s)

[
δR1(qw,i , xi+1, qw,i+1)

⋂
δR2(qw,i , xi+1, qw,i+1)

]

⊆
n−1⋂
i=0

⋃
w1∈T(R1,s)
w2∈T(R2,s)

[
δR1(qw1,i , xi+1, qw1,i+1)

⋂
δR2(qw2,i , xi+1, qw2,i+1)

]

⊆
n−1⋂
i=0

{[ ⋃
w1∈T(R1,s)

δR1(qw1,i , xi+1, qw1,i+1)

]⋂[ ⋃
w2∈T(R2,s)

δR2(qw2,i , xi+1, qw2,i+1)

]}

=
[

n−1⋂
i=0

⋃
w1∈T(R1,s)

δR1(qw1,i , xi+1, qw1,i+1)

]⋂[
n−1⋂
i=0

⋃
w2∈T(R2,s)

δR2(qw2,i , xi+1, qw2,i+1)

]

= AcceptB(R 1, s)
⋂

AcceptB(R 2, s).

¤

In the proof of both theorems we have made use of Lemma 2.14.

Proposition 3.11. ⊆′′ ⊆ ⊆′

Proof: We proveR 1 ⊆′′ R 2→ R 1 ⊆′ R 2

If R 1 ⊆′′ R 2 then (R 1 ∩R 2) = R 1. With Theorems 3.9 and 3.10 we know
that Accept (R 1, s) = Accept(R 1 ∩R 2, s) ⊆ Accept(R 1, s)

⋂
Accept(R 2, s)

⊆′ Accept(R 2, s). ThusR 1 ⊆′ R 2. ¤

Theorem 3.12. Lat (l ,6,2) is a bounded lattice.

Proof: We consider the LQAR max= (2,2,2, max= {δ(q, x, q′) = 1|x ∈
6, q, q′ ∈ 2)}), where 1 is the greatest element of the latticel . For any LQA
R = (Q, I , T, ) of Lat (l ,6,2) we have

1. R max∪R = (Q
⋃
2, I

⋃
2, T

⋃
2, {δ(q, x, q′)|x ∈ 6; q, q′ ∈ Q⋃

2; δ(q, x, q′) = δRmax(q, x, q′)
⋃
δR (q, x, q′)}) = (2,2,2,

max= {δ(q, x, q′) = 1|x ∈ 6, q, q′ ∈ 2)}) = R max

2. R min
⋂

R = (Q
⋂
2, I

⋂
2, T ∩2, {δ(q, x, q′)|x ∈ 6; q, q′ ∈ Q⋂

2; δ(q, x, q′) = δRmax(q, x, q′)
⋂
δR (q, x, q′)}) = (Q, I , T, ) = R

Then we consider the LQAR min = (®,®,®,®). Similarly, it is easy to prove
that the rules
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1. R min ∪R = R

2. R min ∩R = R min

hold. This examination shows thatR max and R min are the greatest and least
element of Lat (l ,6,2), respectively. Thus Lat (l ,6,2) is a bounded lattice.¤

Corollary 3.13. For any LQAR of Lat (l ,6,2), we have the inclusion rule:

R min ⊆′′ R ⊆′′ R max

Proof: Use Definition 3.7.
Now we can write the bounded lattice Lat (l ,6,2) in the following form:

Lat(l ,6,2) = (LQA(l ,6,2), ∩, ∪, R min, R max)

or also in the form:

Lat(l ,6,2) = (LQA(l ,6,2), ⊆′′, R min, R max)

It is meaningful to discuss the relationship between the basic latticel and the
lattice of LQA defined on (l ,6,2). We have the following. ¤

Theorem 3.14. Lat (l ,6,2) is a complete lattice if and only if l itself is a
complete lattice.

Proof: Consider the intersection of an arbitrary number of LQA:

∩∞i=1R i (Qi , Ii , Ti , i )

= R

( ∞⋂
i=1

Qi ,
∞⋂

i=1

Ii ,
∞⋂

i=1

Ti ,

{
δ(q, x, q′)|q, q′ ∈

∞⋂
i=1

Qi , x ∈ 6, δ(q, x, q′)

=
∞⋂

i=1

δRi (q, x, q′)

})
= R (Q, I , T, ∞) = R∞

Note that

1. Since for eachi , it is Ii ⊆ Qi , Ti ⊆ Qi , therefore, we haveI ⊆ Q, T ⊆ Q.
2. Sincel is a complete lattice,δ(q, x, q′) is also an element ofl .

Therefore,R∞ is an element of Lat (l ,6,2). Lat (l ,6,2) is a complete
lattice.

On the other hand, if Lat (l ,6,2) is a complete lattice, thenR∞ is an element
of Lat (l ,6,2). Thus,δ(q, x, q′) must be also an element ofl . This showsl is a
complete lattice. ¤
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Theorem 3.15. Lat (l ,6,2) is a distributive lattice if and only if l itself is a
distributive lattice.

Proof: LetR i = (Qi , Ii , Ti , i ), i = 1, 2, 3 be three LQA defined on (l ,6,2).
Assume thatl is distributive, then:

R 1 ∩ (R 2 ∪R 3)

=
(

Q1

⋂(
Q2

⋃
Q3

)
, I1

⋂(
I2

⋃
I3

)
, T1

⋂(
T2

⋃
T3

)
,{

δ(q, x, q′) | x ∈ 6; q, q′ ∈ Q1

⋂(
Q2

⋃
Q3

)
; δ(q, x, q′)

=
(
δR1(q, x, q′)

⋂[
δR2(q, x, q′)

⋃
δR3(q, x, q′)

]})
=
((

Q1

⋂
Q2

)⋃(
Q1

⋂
Q3

)
;
(

I1

⋂
I2

)⋃(
I1

⋂
I3

)
,(

T1

⋂
T2

)⋃(
T1

⋂
T3

)
,
{
δ(q, x, q′) | x ∈ 6; q, q′ ∈

(
Q1

⋂
Q2

)⋃
(

Q1

⋂
Q3

)
; δ(q, x, q′)

=
[
δR1(q, x, q′)

⋂
δR2(q, x, q′)

]⋃[
δR1(q, x, q′)

⋂
δR3(q, x, q′)

]})
= (R 1 ∩R 2) ∪ (R 1 ∩R 3)

This chain of reasoning can be also done backwards. ThereforeR 1 ∩ (R 2 ∪
R 3) = (R 1 ∩R 2) ∪ (R 1 ∩R 3) if and only if a

⋂
(b∪ c) = (a

⋂
b)
⋃

(a
⋂

c)
for any elementsa, b, andc of l .

Similarly we can prove thatR 1 ∪ (R 2 ∩R 3) = (R 1 ∪R 2) ∩ (R 1 ∪R 3)
if and only if a

⋃
(b
⋂

c) = (a
⋃

b)
⋂

(a
⋃

c) for any elementsa, b, andc of l .
Thus if Lat (l ,6,2) is distributive if and only ifl is distributive. ¤

Theorem 3.16. Lat (l ,6,2) is a modular lattice if and only if l itself is a
modular lattice.

Proof: LetR i = (Qi , Ii , Ti , i ), i = 1, 2, 3 be three LQA defined on (l ,6,2).
Assume thatl is modular, then:

R 1 ∪
(
R 2 ∩

(
R 1 ∪R 3

))
=
(

Q1

⋃(
Q2

⋂(
Q1

⋃
Q3

))
, I1

⋃(
I2

⋂(
I1

⋃
I3

))
, T1

⋃(
T2

⋂(
T1

⋃
T3

))
,{

δ(q, x, q′)|x ∈ 6; q, q′ ∈ Q1

⋃(
Q2

⋂(
Q1

⋃
Q3

))
; δ(q, x, q′)

= δR1(q, x, q′)
⋃[

δR2(q, x, q′)
⋂(

δR1(q, x, q′)
⋃
δR3(q, x, q′)

)]})
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According to Proposition 1.13, it is then

=
((

Q1

⋃
Q2

)⋂(
Q1

⋃
Q3

)
,
(

I1

⋃
I2

)⋂(
I1

⋃
I3

)
,
(

T1

⋃
T2

)⋂
(
T1

⋃
T3

)
,
{
δ(q, x, q′)|x ∈ 6; q, q′ ∈

(
Q1

⋃
Q2

)⋂(
Q1

⋃
Q3

)
, δ(q, x, q′)

=
[
δR1(q, x, q′)

⋃
δR2(q, x, q′)

]⋂[
δR1(q, x, q′)

⋃
δR3(q, x, q′)

]})
= (R 1 ∪R 2) ∩ (R 1 ∪R 3)

This chain of reasoning can be also done backwards. ThereforeR 1 ∪ (R 2 ∩
(R 1 ∪R 3)) = (R 1 ∪R 2) ∩ (R 1 ∪R 3) if and only if a

⋃
(b
⋂

(a
⋃

c)) =
(a
⋃

b)
⋂

(a
⋃

c) for any elementsa, b andc of l .
Thus if Lat (l ,6,2) is modular if and only ifl is modular. ¤

4. CONCLUSION

In this paper, we have reviewed the lattice-valued finite-state quantum au-
tomata introduced by Ying (2000a). We have redefined the acceptance degree
(recognizability in Ying’s paper) and got a new definition of quantum automata.
We call the LQA defined in Ying (2000a) as LQA of type A and that in this paper
as LQA of type B. Based on the two automata operations× and+ introduced in
Ying’s paper, we have shown that of the four automata operations (two for type
A and two for type B), only one of them follows the law of conservation of ac-
ceptance degree. This shows a basic difference between classical automata and
quantum ones.

In the effort of studying the structure of the set of LQA defined on the same
latticel and alphabet6, we get the conclusion that they do not form a lattice with
respect to the acceptance degree. LQA of type A form an upper semilattice with
the two operations× and+. LQA of type B don’t. The source of trouble is the
nondeterminacy. While trying to transform all nondeterministic LQA in equivalent
deterministic form, we met the problem that it is not always possible to transform
a nondeterministic LQA (no matter it is of type A or type B) into a deterministic
one. We have proved this fact rigorously. This may be a second essential difference
between classical and quantum automata.

We then defined another new type of LQA, the LQA of type C. We have proved
that each (nondeterministic) LQA of type C can be transformed to an equivalent
deterministic one. With this result we were able to show that the LQA of type C
form a lower semilattice with respect to the acceptance degree. This is another
symmetry between different definitions of LQA acceptance degree.

The introduction of type B LQA has the advantage that it considers the pro-
cedure of accepting a string a by a nondeterministic LQA not as a mix of multiple
single path acceptance procedures, but as an integrated procedure, which proceeds
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concurrently in multiple directions. We call it distributed acceptance. This def-
inition provides a unified way of processing deterministic and nondeterministic
LQA. Its second advantage is to consider the acceptance of a strings= x1 x2 . . . xn

as an evolutional procedure. Intuitionally, the degree of acceptingx1 x2 . . . xj for
any 2≤ j ≤ n is “less or equal” (in the sense of the partial order of the lattice) to
that of acceptingx1 x2 . . . xj−1. This evolutionary character of acceptance degree
calculation is further improved by introducing LQA of type C, where the accep-
tance degree of a transition is divided in portions and assigned to different exit
directions.

Finally, by reducing the size of equivalence group of LQA and concentrat-
ing on the structure properties of LQA we have succeeded in developing a true
lattice Lat (l ,6,2) of LQA, where the most interesting thing is to discover the
relationship between the original latticel and the lattice of LQA. We have proved
that the validity of many properties of the lattice Lat (l ,6,2), such as whether
it is complete, distributive or modular, depend on the corresponding properties of
the original lattice. This may be the third essential difference between classical
automata and quantum ones.

Sine we have introduced lattices and semilattices for the quantum automata,
the next work may be to explore further the structure of these lattices and the
relations between the structure of original latticel and that of the quantum lattice.
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